

Tetrahedron Letters, Vol. 35, No. 8, pp. 1215-1218, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$6.00+0.00

0040-4039(94)E0029-W

Selective Synthesis of a Novel Family of Oligopyridine Based Imino-Nitroxide Biradicals Catalysed by Selenium Dioxide

Gilles Ulrich and Raymond Ziessel*

Ecole Européenne des Hautes Etudes des Industries Chimiques de Strasbourg Institut de Physique et de Chimie des Matériaux de Strasbourg 1, rue Blaise Pascal, 67008 Strasbourg, France

Abstract: Selective synthesis of bis-N-hydroxyimidazolidines based on pyridines, 2,2'-bipyridines, 1,10-phenanthroline, pyridazine and 1,8-naphthyridine from the corresponding dialdehydes and N,N'-dihydroxy-2,3-diamino-2,3-dimethylbutane in the presence of catalytic amounts of SeO₂. Mild oxidation afforded the corresponding stable imino-nitroxide biradicals 4 to 11.

In the preceding communication¹ we presented the synthesis and characterization of a novel family of oligopyridine based nitronyl-nitroxide biradicals. These biradicals were prepared by condensation of N,N'-dihydroxy-2,3-diamino-2,3-dimethylbutane with the corresponding diformyl compounds, followed by mild oxidation under phase transfer conditions. When 2,9-diformyl-1,10-phenanthroline was allowed to react under the same experimental conditions a yellow precipitate, identified as 1, was formed within 2 weeks. Prolonged reaction time resulted in the dissolution of 1 and formation of the bright orange compound 2. Mild oxidation of both species resulted in the selective formation of the mixed biradical 3 and the imino-nitroxide biradical 4, respectively. The presence of traces of selenium dioxide from the preparation of the bis-aldehyde² were expected to catalyse the deshydration of the N,N'-dihydroxyimidazolidine. Analogous results were obtained with 1,7-diformyl-2,8-naphthyridine also prepared by SeO₂ oxidation.³

We reported in this letter a mild and versatile method for the selective preparation of a novel family of imino-nitroxide based oligopyridine biradicals. The bis-N-hydroxyimidazolidines were prepared in good yield (40 to 90%) by multiple condensation of N,N'-dihydroxy-2,3-diamino-2,3-dimethylbutane⁴ with the formyl compounds⁵ in methanol, using selenium dioxide as catalyst (5 mole %).

Mild oxidation of the bis-N-hydroxyimidazolidines under phase transfer conditions, using NaIO₄ gave the corresponding pure orange imino-nitroxide biradicals 4 to 11, after alumina chromatography and recrystallisation from dichloromethane/hexane.

These free imino-nitroxide radicals also appear to be very stable and show, as expected, the characteristic orange colour of imino-nitroxides.⁶ The imino-nitroxide biradicals are easily reduced during the mass analysis and thus exhibit in the FAB⁺ mass spectra intense molecular ion peaks ($[M+2e+3H]^+$) plus characteristic major fragments due to the successive loss of oxygen atoms. All compounds were obtained as solids and were characterized by IR, UV-Vis and mass (FAB⁺). All data are consistent with the proposed structures (see Table for selected data).

Product	Isolated	Мр	IR		UV-Vis.d)	Mass e)
	yield (%) ^{a)}	(°C)	v (cm ⁻¹) ^{b)}	R _f c)	λ _{max} (nm)	
					ε (M ⁻¹ cm ⁻¹)	
1	25	295 dec.	3213/1656	-	-	479
2	39	230-231	3210/1667	0.11	425(12500)	46 1
3	20	224 dec.	1623/1357	0.36	537(630)	475
			1370		500(580)	
4	24*	218-219	1623/1376	0.60	429(570)	460
5	73	165-166	1539/1372	0.75	420(680)	359
6	20	215-216	1605/1371	0.77	410(800)	359
7	50	265 dec.	1597/1360	0.82	427(650)	436
8	65	232-233	1594/1368	0.82	461(1180)	436
9	50	230 dec.	1 576/137 1	0.80	418(800)	436
10	45	259-260	1565/1385	0.77	445(770)	514
11	23*	216-217	1602/1371	0.77	449(1000)	410

Table: Selected data for compounds depicted in Schemes

a) Oxidation reaction, except for (*) which correspond to a global yield (condensation + oxidation); b) v_{N-O} (1350-1380 cm⁻¹), $v_{N=C}$ (1623-1539 cm⁻¹) and v_{N-OH} (3210 cm⁻¹), measured in KBr pellets; c) determined on alumina sheets in ethyl acetate/methanol 95/5; d) measured in dichloromethane; e) obtained by FAB⁺ using (m-NBA) as matrix and correspond to [M+2e+3H]⁺, [M+e+2H]⁺ or [M+H]⁺.

The bis-N-hydroxyimidazolidines (characterized by ¹H, ¹³C and IR) are either prepared at room-temperature in a one-flask procedure involving the addition of SeO₂ to an in-situ generated bis-N,N'-dihydroxyimidazolidine, or by deshydration of the isolated bis-N,N'dihydroxyimidazolidine species in the presence of catalytic amounts of SeO₂. An optimum catalytic activity was obtained using 5 to 10 mole% of SeO₂. Stoechiometric amounts of SeO₂ have previously been used to convert aldoximes to nitriles⁷ or aldehydes to nitriles in the presence of hydroxylamine hydrochloride. In this latter case a catalytic reaction could only be obtained using a continuous and efficient removal of water.⁸ In our system the presence of water appears not to alter the course of the reaction. The most probable reaction pathway involves the nucleophilic attack of N,N'-dihydroxyimidazolidine on SeO₂, followed by proton transfer with formation of N-hydroxyimidazolidine and selenic acid. Water elimination restores SeO₂ which perpetuates the catalytic cycle.

Although we have not investigated the full scope of the catalytic reaction describe here, we feel that its high selectivity and mildness will make it a very useful reagent for the synthesis of mixed nitronyl-nitroxide/ imino-nitroxide ligands. Future studies of this novel series of polydentate ligands will include complexation with paramagnetic metals as well as the determination of the coordination mode (imino versus nitroxide).

Acknowledgments

RZ is most grateful to the EHICS for special financial support. We would like also to thank Dr. A. Marsh for helpful and fruitful discussions.

References and Notes

- 1. Ulrich, G.; Ziessel, R. see preceding paper of this issue.
- 2. Chandler, C.J.; Deady, L.W.; Reiss, J.A. J. Heterocyclic Chem. 1981, 18, 599-601.
- 3. Chandler, C.J.; Deady, L.W.; Reiss, J.A.; Tzimos, V.J. J. Heterocycl. Chem. 1982, 19, 1017-1019.
- 4. Lamchen, M.; Mittag, T. W. J. Chem. Soc. C 1966, 2300-2303.
- 2,6-diformylpyridine was prepared by Swern oxidation of the corresponding dialcohol;
 2,5-diformylpyridine was prepared by the following sequence of reactions: (i) esterification of the corresponding diacid; (ii) reduction of the diester with NaBH4 to the dialcohol and finally (iii) subsequent Swern oxidation to the dialdehyde; 4,4'-diformyl-2,2'-bipyridine, Kocian, O.; Mortimer, R.J.; Beer, P.; Tetrahedron Letters 1990, 31, 5069-5072; 5,5'-diformyl-2,2'-bipyridine, Mendoza, J.; Mesa, E.; Rodriguez-Ubis, J.-C.; Vazquez, P.; Vögtle, F.; Windscheif, P.-M.; Rissanen, K.; Lehn, J.-M.; Lilienbaum, D.; Ziessel, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 1331-1333; 6,6'-diformyl-2,2'-bipyridine, Parks, J.E.; Wagner, B.E.; Holm, R.H. J. Organometal. Chem., 1973, 56, 53-66; 3,6-Di-(6-carboxadehyde-2-pyridyl)-pyridazine was prepared from 2-hydroxymethyl-6-cyanopyridine following the same method as for the synthesis of 3,6-bis-(2-pyridine)-pyridazine, Butte, W.A.; Case, F.H. J.Org.Chem. 1961, 26, 4690-4692; 2,7-diformyl-1,8-naphthyridine was prepared from 2,7-dimethyl-1,8-naphthyridine (Paudler, C.J.; Kress, J.J. J. Heterocycl. Chem. 1967, 4, 284-289) and oxidized following the procedure described in ref. 3.
- 6. Ullman, E.F.; Call, L.; Osiecki, J.H. J. Org. Chem., 1970, 35, 3623-3631.
- 7. Sosnovsky, G.; Krogh, J.A. Synthesis, 1978, 703-705 and references therein.
- 8. Sosnovsky, G.; Krogh, J.A.; Umhoefer, S.G. Synthesis, 1979, 722-724.

(Received in France 1 December 1993; accepted 20 December 1993)